

MnDOT GHG Analysis Requirements & Minnesota Infrastructure Carbon Estimator (MICE)

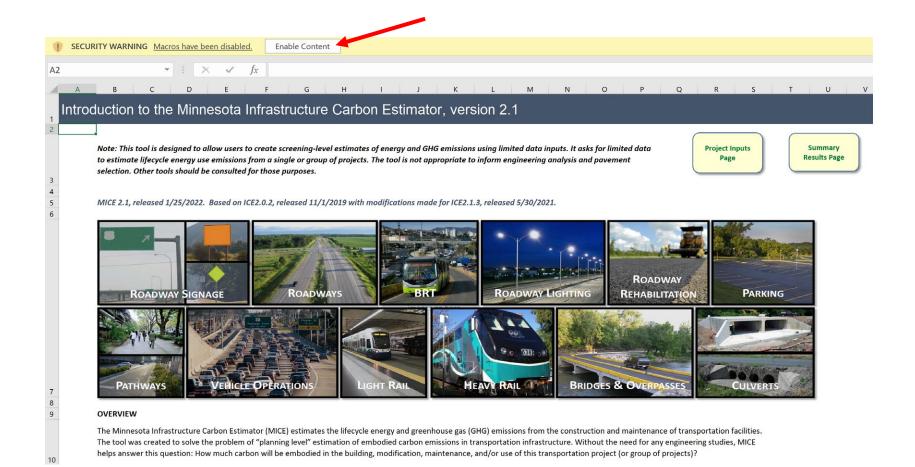
Pete Wasko, MnDOT

Jeff Houk, Morrison Environmental Consulting

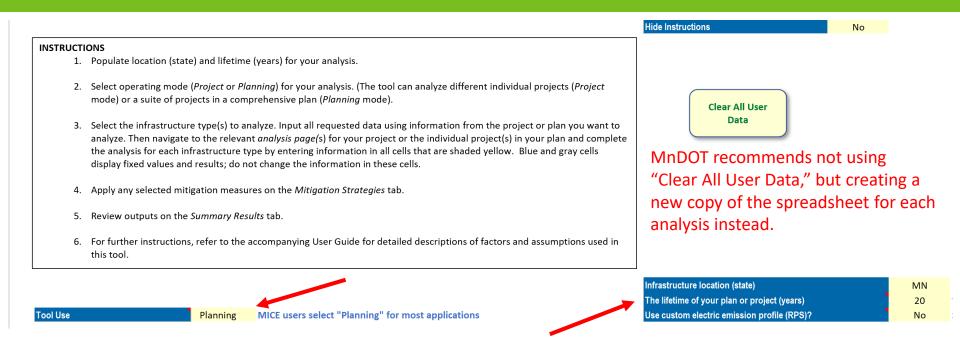
March 24, 2022

Outline

- Background
- Overview of MnDOT's greenhouse gas analysis guidance
- Overview of MICE
- Example analyses
- Resources

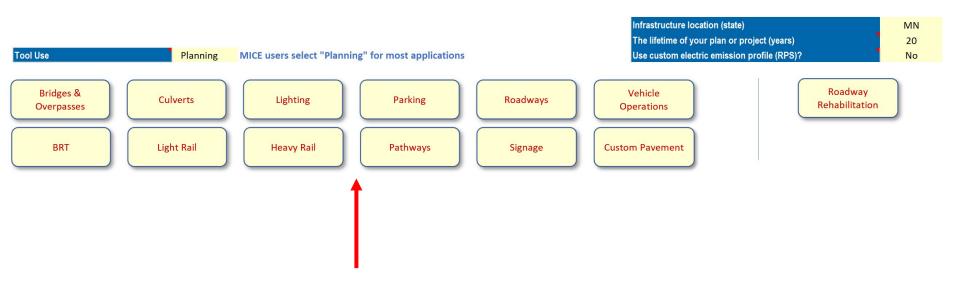

Quick overview of process

- **Step 1:** Select the location (MN) and lifetime (years) on the *Project Inputs* tab.
- **Step 2:** Select Planning operating mode for your analysis.
- **Step 3:** Select all types of infrastructure associated with your project, and select Vehicle Operations if your project affects traffic volumes and/or speeds.
- **Step 4:** Enter information in the comment boxes per MnDOT policy—District #, Highway #, State Project ID, analyst name and date.
- **Step 5:** The selections in Step 3 open up additional tables below the comment boxes; input all relevant data using information from the project you want to analyze. Blue and gray cells display fixed values and results; do not change the information in these cells.
- **Step 6:** Apply any applicable mitigation measures on the *Mitigation Strategies* tab.
- Step 7: View summary outputs on the Summary Results tab.

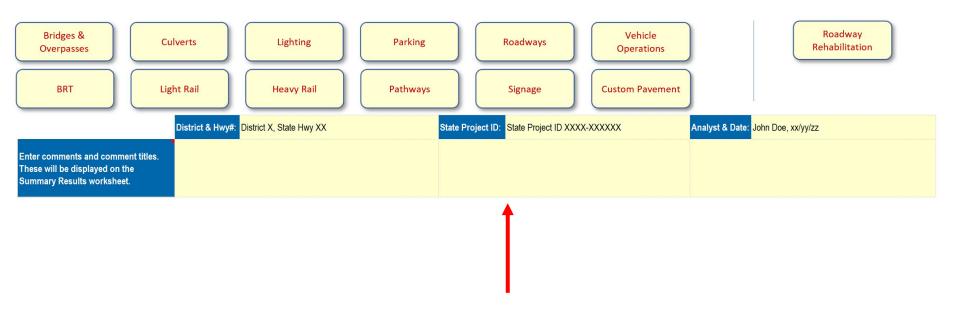

Tips

- MICE is an Excel spreadsheet that uses macros. When first opening MICE, enable macros if prompted to do so (click on "Enable Content"). The tool will not operate without macros enabled.
- To conduct an accurate analysis, entering information on all project activities is more important than ensuring that all activities are sorted into precise categories. That is, it is most important to ensure that all lane miles and track miles of construction and rehabilitation activity are included.
- Users should make reasonable assumptions based on their knowledge of the project area in order to fill any data gaps.
- MnDOT recommends that you retain a "Master" copy of MICE, and for each analysis, save a new copy with a project-specific filename and edit that copy. That way, each analysis will start with a fresh version of MICE that does not contain any inputs from previous analyses.

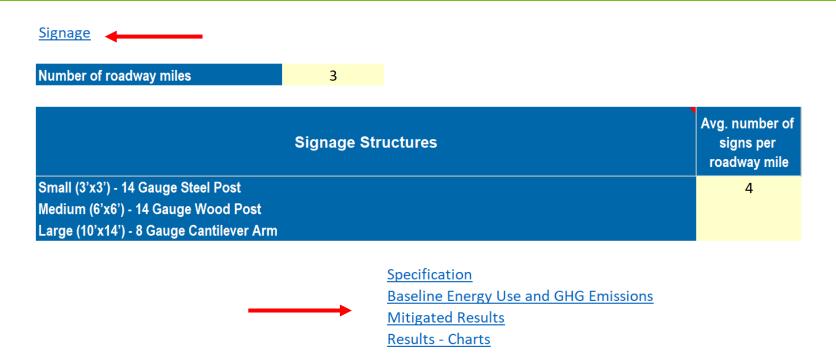
<u>Intro screen</u>


Project Inputs (1)

- Make sure "MN" is selected as the location (selecting a state "turns on" the rest of the functions of the tool)
- Enter a project lifetime in years; needs to be consistent with any traffic data years entered later
- Custom electric emission profile should be "No"
- Select "Planning" mode of operation


Project Inputs (2)

 Click all applicable types of infrastructure associated with your project (will turn green when selected)

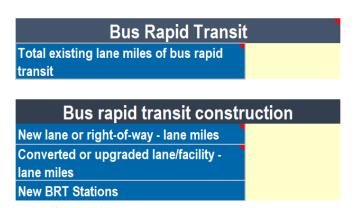


Project inputs (3)

 Enter comments as needed to document your analysis. Some placeholders are included in the title boxes, but more detailed comments can be entered in the larger comment boxes below.

Navigation Options

- On the Project Inputs tab, each type of selected infrastructure includes hyperlinks leading directly to the tab for that infrastructure
- Most users won't need these to enter data

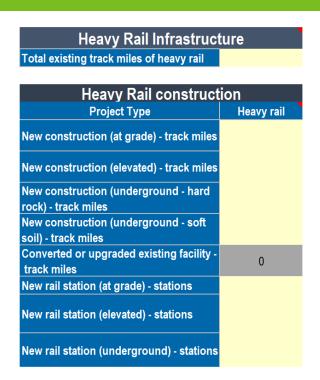

Inputs: Bridges and Overpasses

Bridges & Overpasses													
		Construct New	Bridge/Overpass			Reconstruct Bridge/Overpass				Add Lane to Bridge/Overpass			
Bridge/Overpass Structure	Number of bridges & overpasses	Average number of spans per structure	Average number of lanes per structure	Total number of lane-spans	Number of bridges & overpasses	Average number of spans per structure	Average number of lanes recon- structed per structure	Total number of lane-spans	Number of bridges & overpasses	Average number of spans per structure	Average number of lanes per structure added	Total number of lane-spans	
Single-Span		1		0		1		0		1		0	
Two-Span		2		0		2		0		2		0	
Multi-Span (over land)				0				0				0	
Multi-Span (over water)				0				0				0	

- Inputs are in terms of the # of bridges, # of lanes, and for longer bridges, # of spans
- Bridge emissions estimates reflect just the underlying structure, not the pavement surface, lights, signs, etc.
 These need to be added using the Roadways, Lighting, and Signage tabs.

Inputs: Bus Rapid Transit

Bus Rapid Transit


 Inputs include existing lane miles (if applicable—0 for new projects), new lane miles, converted or upgraded lane miles, and # of stations

Inputs: Culverts and Storm Sewers

<u>Culverts</u>							
	Single Box Culv	verts and Sewers	Double Box Culve	erts and Sewers	Pipe Culverts and Sewers		
	Number of culverts	Average culvert length (ft)	Number of culverts	Average culvert length (ft)	Number of culverts	Average culvert length (ft)	
Small (e.g., 6'x6' cell or 12" pipe)							
Medium (e.g., 8'x8' cell or 24" pipe)							
Large (e.g., 12'x12' cell or 48" pipe)							

 Inputs include # of culverts and storm sewers by size and type, and the length (average length if multiple culverts)

Inputs: Heavy & Light Rail

 Inputs are similar for both types of rail: existing track miles, new track miles (at grade, elevated or underground), converted/upgraded track miles, stations

Inputs: Lighting

Number of roadway miles

Lighting Structures			Ave. number	Typical wattage
MnDOT Luminaire Type	Typical Lumens	Ave. number of HPS lights per roadway mile	of LED lights per roadway mile	of LED lights in this lumen range
Roadway Use 40' Mount 250 W HPS Replacement	15,450			120
Roadway Use 49' Mount 400 W HPS Replacement	18,120			147
Roadway Underpass Use 250 W HPS Replacement	10,320			100
High Mast Luminaire - Asymmetrical	43,300			322
High Mast Luminaire - Symmetrical	85,300			629
Roadway Luminaire - 5 Lane Shoulder	43,264			325
Roadway Luminaire - 5 Lane Median	31,341			226
Rest Area Parking Lot Luminaire	15,850			130
Rest Area Walkway Luminaire	4,150			35
Other (specify wattage in Column G)				

- These inputs customized to reflect MnDOT lighting practices
- Inputs include # of roadway miles affected, and # of lights by type. Default wattages based on MnDOT specs included.
- "Other" category available for non-standard lights; # of lights and wattage needed
- Instead of using the roadway miles and number of lights to calculate lights per mile, you can also just enter "1" for the number of roadway miles, and enter the total number of lights of each type.

Inputs: Parking

- Parking includes rest area parking, park & ride lots, etc.
- Inputs include # of spaces of surface and structured parking

Inputs: Pathways (Bike & Ped Facilities)

Pathways

Bicycle and Pedestrian Facilities						
Project Type	New Construction	Resurfacing				
Off-Street Bicycle or Pedestrian Path - miles						
On-Street Bicycle Lane - lane miles						
On-Street Sidewalk - miles		N/A				

- Inputs are in terms of miles of construction or resurfacing, by type of project (off-street path, on-street bike lane, sidewalks)
- Use Construction inputs for both new construction and reconstruction

Inputs: Roadway Rehab (resurfacing/reconstruction)

Roadway System for Road Rehabilitation						
Facility type	Resurface (lane miles)	Reconstruct (lane miles)				
Rural Interstates						
Rural Principal Arterials						
Rural Minor Arterials						
Rural Collectors						
Urban Interstates / Expressways						
Urban Principal Arterials						
Urban Minor Arterials / Collectors						
% roadway construction on rocky / mountainous terrain						

 Inputs are lane miles of resurfacing and/or reconstruction by functional class, along with % construction in rocky/ mountainous terrain

Inputs: Roadways

Roadway System

Total existing centerline miles

Total newly constructed centerline miles

Roadway Projects						
	Roadway System	Roadway Construction				
Facility type	Existing Roadway (lane miles)	New Roadway (lane miles)	Construct Additional Lane (lane miles)	Realignment (lane miles)	Lane Widening (lane miles)	Shoulder Improvement (centerline miles)
Rural Interstates						
Rural Principal Arterials						
Rural Minor Arterials						
Rural Collectors						
Urban Interstates / Expressways						
Urban Principal Arterials						
Urban Minor Arterials / Collectors						

Include roadway rehabilitation activities (reconstruct and resurface)

No

For Minnesota, this box should always read No.

% roadway construction on rocky / mountainous terrain

Inputs: Roadways

- Enter the total centerline miles for the existing roadway network (if applicable-enter "0" or leave blank when analyzing totally new roadways).
- Enter the total newly constructed centerline miles for the proposed project analysis (if applicable).
- Enter the total lane miles, of each roadway type, for the existing roadway network (if applicable)
- Enter the number of lane miles for each type of roadway construction associated with the project:
 - New roadway
 - Adding additional lanes to an existing roadway
 - Roadway realignment
 - Lane widening
 - Shoulder improvement
- Estimate the percentage of the project area that is in hilly or mountainous terrain.
- "Include Roadway Rehab Activities" should always read "No" (under MnDOT guidance, these projects are analyzed as standalone projects)

Inputs: Land Use

Land Use					
Acres of Land Used					
Grassland	Forest Fores				
covered by	covered by	converted			
pavement &	pavement &	to grassland			
shoulder	shoulder	(ROW)			

- Land use inputs included in the Roadways section (you need to select "Roadways" to enter land use information, even for non-roadway projects)
- Enter acres of land converted from forest, converted from grassland, or converted from forest to grassland (e.g., for cleared ROW)
- MnDOT has a "no-net-loss" policy for wetlands, so wetlands inputs aren't necessary
- (Land use factors sourced from "A Landowner's Guide to Carbon Sequestration Credits" by the Central Minnesota Regional Sustainable Development Partnership)

Inputs: Signs

Number of roadway miles		
	Signage Structures	Avg. number of signs per roadway mile
Small (3'x3') - 14 Gauge Steel Post		
Medium (6'x6') - 14 Gauge Steel Post		
Large (10'x14') - 8 Gauge Cantilever Arm		

- Inputs are the # of road miles affected, and the # of signs (by type) per mile
 - Instead of using the roadway miles and number of signs to calculate signs per mile, you can also just enter "1" for the number of roadway miles and enter the total number of signs of each type.
- Emissions from signage are typically very low. If you don't have data on the number of signs, MnDOT recommends either making an educated guess, or disregarding this source of emissions altogether. The emissions are too low to justify any additional effort to gather input data.
- Variable message signs are not an available sign type

Inputs: Vehicle Operating Emissions and Construction Delay

	Vehicle Operating Emissions					
	Year		Avg Daily VMT on	Average Daily (Congested)		
	Default	Custom	project	Speed (mph) (or NA)		
Project Base Year	2020					
Project Design Year/No Build	2040					
Project Design Year/Build	2040					

	Construction Delay, Additional Emissions					
	Year		Avg Daily VMT impacted by	Average Daily (Congested)		
	Default	Custom	project	Speed (mph) (or NA)		
Construction start year	2022					
Pre-construction (baseline) year	2020					
Project Base Year						
Construction timeframe (months)	N/A					

Inputs: Vehicle Operating Emissions

- This only applies for projects that affect vehicle traffic volumes or speeds.
- Enter in a base and project design/horizon year for vehicle emissions. The interval between the base year and design year must be consistent with the "project lifetime" entered on the Project Inputs page.
- Enter the average daily vehicle miles traveled for the base year, design year no build, and design year build. This is the total VMT for all road segments associated with the project.
- Enter the average daily (congested) speed for the base year, design year no build, and design year build. If unknown, enter "NA" (in capital letters).

Inputs: Vehicle Operating Emissions

- Vehicle operating emissions are usually the largest source of emissions for projects that include them.
- Use the traffic data that you have available; MnDOT does not require MICE users to go out and gather traffic data just for purposes of GHG analysis.
 - MnDOT traffic data and forecasts available at www.dot.state.mn.us/traffic/data/tma.html
- If you know VMT but not speeds, enter "NA" for speed; MICE will use average emissions rates
 - You can also just enter the speed limit
- MICE User Guide include tips for users with more refined traffic data (peak & offpeak, etc.)

Inputs: Vehicle Operating Emissions

- Vehicle Operating Emissions are not required for projects that do not impact traffic:
 - Resurfacing/reconstruction
 - Rebuilding a bridge to the same capacity
 - Stand-alone culvert, lighting, parking, pathway, or signage projects
- Some projects might impact speeds, but not traffic volumes
 - Straightening a curved section of road
 - Adding a truck climbing lane
- If you are also required to perform a mobile source air toxics analysis for your project with the MOVES model, use that model for vehicle operating GHG emissions, not MICE

Calculating Average Speed (example)

- Two roads associated with project
 - Freeway segment, 3 miles, 150,000 ADT, 65 mph
 - Arterial segment, 2 miles, 20,000 ADT, 35 mph
- Calculate VMT (vehicle miles traveled):
 - Freeway: 3 * 150,000 = 450,000
 - Arterial: 2 * 20,000 = 40,000
 - Total: 490,000
- Calculate VHT (vehicle hours traveled):
 - Freeway: 450,000 miles/65 mph = 6923 hours
 - Arterial: 40,000 miles/35 mph = 1143 hours
 - Total: 8066 hours
- Average speed: 490,000 miles/8066 hours = 60.7 mph

Inputs: Construction Delay

- Under MnDOT guidance, construction delay is only considered if it lasts longer than one year
- If estimating emissions from construction delay, enter in the construction start year and a preconstruction year (representing an uncongested situation prior to lane closings). Enter the construction timeframe in months.
- Enter the average daily vehicle miles traveled for the start and preconstruction years.
- Enter the average daily speed for the construction period (congested) and pre-construction (before construction delay effects are observed).
 - If you don't know the congested speed (or work zone speed limit) during construction, enter "NA"; MICE will assume that the construction speed is half of the pre-construction speed
 - If you don't know the pre-construction speed, enter the speed limit.

Custom Pavement (not used)

Roadway System Total centerline miles for custom pavement Total lane miles for custom pavement Lifecycle Energy Factor (mmBTU per lane mile) Lifecycle Emissions Factor (MT GHG per lane mile)

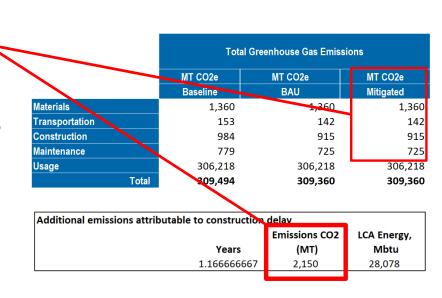
- This input is designed to allow the user to model emissions of custom pavement types (MICE is based on national average use of asphalt and concrete)
- Not currently used by MnDOT
- In the future, as emissions data become available, this feature might be used to model emissions from alternative pavements, pavement overlays (like chip seal projects)

Mitigation

	ess As Usual, or pply to all projects sel in MN)				BAU Reductions		Planned Reductions		
Strategy	BAU deployment	Planned deployment	Deployment increase	Energy reduction factor	GHG reduction factor	Energy reductions	GHG reductions	Energy reductions	GHG reductions
Alternative fuels and vehicle hybridization								10.	
Switch from diesel to Soy bean-based BD20	60%	60%	0.0%	-5%	12%	-2.8%	7.0%	-2.8%	7.0%
Switch from diesel to Soy bean-based RDII 100			0.0%	-20%	66%	0.0%	0.0%	0.0%	0.0%
Switch from diesel to Forest Residue-based RDII 100			0.0%	-61%	71%	0.0%	0.0%	0.0%	0.0%
Switch from diesel to E-Diesel, Corn			0.0%	-3%	0%	0.0%	0.0%	0.0%	0.0%
Switch from diesel to PHEV: Diesel and Electricity (U.S. Mix)			0.0%	41%	44%	0.0%	0.0%	0.0%	0.0%
Switch from diesel to CNG, NA NG			0.0%	-6%	11%	0.0%	0.0%	0.0%	0.0%
Switch from diesel to LNG, NA NG			0.0%	-11%	7%	0.0%	0.0%	0.0%	0.0%
Hybrid maintenance vehicles and equipment			0.0%	11%	11%	0.0%	0.0%	0.0%	0.0%
Combined hybridization/B20 in maintenance vehicles and equipment			0.0%	1%	27%	0.0%	0.0%	0.0%	0.0%
Hybrid construction vehicles and equipment			0.0%	11%	11%	0.0%	0.0%	0.0%	0.0%
Combined hybridization/B20 in construction vehicles and equipment			0.0%	1%	27%	0.0%	0.0%	0.0%	0.0%
Vegetation management									î
Alternative vegetation management strategies (hardscaping, alternative mowing, integrated roadway/vegetation management)			N/A	25%	25%	0.0%	0.0%	0.0%	0.0%
Snow fencing and removal strategies									
Alternative snow removal strategies (snow fencing, wing plows)	Yes	Yes	N/A	50%	50%	50.0%	50.0%	50.0%	50.0%
In-place roadway recycling			1,0000						
Cold In-place recycling			0.0%	33%	37%	0.0%	0.0%	0.0%	0.0%
Full depth reclamation			0.0%	68%	68%	0.0%	0.0%	0.0%	0.0%
Warm-mix asphalt									
Warm-mix asphalt			0.0%	37%	37%	0.0%	0.0%	0.0%	0.0%
Recycled and reclaimed materials									
Use recycled asphalt pavement as a substitute for virgin asphalt aggregate			0.0%	12%	12%	0.0%	0.0%	0.0%	0.0%
Use recycled asphalt pavement as a substitute for virgin asphalt bitumen			0.0%	84%	84%	0.0%	0.0%	0.0%	
Use industrial byproducts as substitutes for Portland cement			0.0%	59%	59%	0.0%	0.0%	0.0%	0.0%
Use recycled concrete aggregate as a substitute for base stone			0.0%	58%	58%	0.0%	0.0%	0.0%	0.0%
Pavement preservation									
Pavement preservation extends roadway life by (years)			N/A	N/A	N/A	N/A	N/A	N/A	N/A
Pavement preservation frequency (every N years, for entire roadway system)			N/A	N/A	100,000	N/A	N/A	N/A	

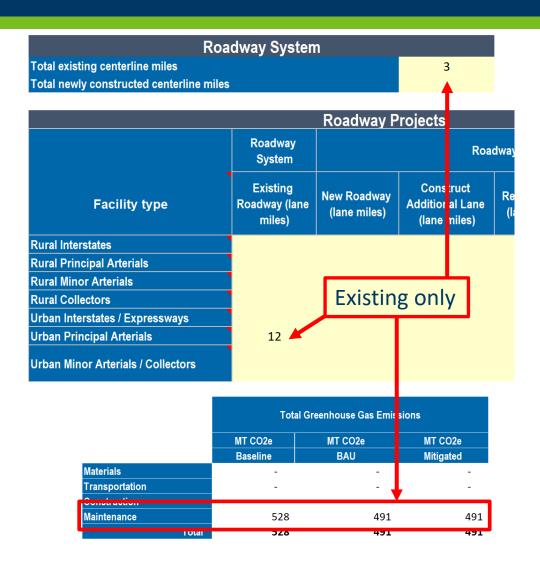
Reporting results in your NEPA document

Build/No Build Posults


<table x.x=""> Analysis Re</table>	sult
Operational Emissions (Base Year	CO2 _e , Metric Tons Per Year
and Design Year)	
Base Year (year)	
No Action Alternative (year)	
Build Alternative (Year)	
Difference Build vs No-Build	
Cumulative Difference over project lifetime (20 years)	CO2 _e , Metric Tons (total)

bulla/ No bulla Results				
		Emissions CO2e		
Annual		(MT/year)	Mbtu/year	
Project Base Year	202	15,845	207,920	
Project Design Year/No Build	204	16,182	211,218	
Project Design Year/Build	204	14,562	190,299	
Difference Between Build and No Build		(1,620)	(20,919)	
Cumulative Difference Over Project Lifetime		(16,197)	(209,189)	
Project Total (Build)	20	304,068	3,982,198	

Construction CO2 _e Emissions (Total over Construction Period)	CO2 _e , Metric Tons (total)	
Build Alternative		1
No Build (maintenance of existing system)	(see next slide)	l


Vehicle usage emissions outputs are in the same format as required by MnDOT guidance, and are in the first green table on the Summary Results tab

For Construction, sum the MICE emissions from materials, transportation, construction, and maintenance on the Summary Results tab; also add in construction delay, if modeled

Maintenance Emissions for No Build

- Even though a No Build scenario typically doesn't involve any construction, it may include some maintenance emissions if there is existing infrastructure (e.g., you are widening an existing road)
 - Only applies to BRT, rail, and roadways
- To calculate these emissions, first populate MICE with the existing infrastructure, record the maintenance emissions results, and then add the new infrastructure to calculate Build emissions (or, use a separate copy of MICE for No Build)

3/30/2022 31

Maintenance Emissions for No Build

- Estimating and reporting of maintenance emissions is not required for projects that do not change the amount of infrastructure in place, such as:
 - Rebuilding a bridge with the same length and number of lanes
 - Roadway rehabilitation projects (repaving or reconstruction of an existing road)

Example projects

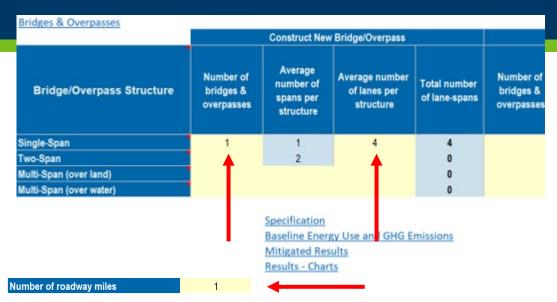
- 1) New interchange
- 2) Bridge replacement
- 3) Resurfacing

Example Project 1: New Interchange

- New interchange on an rural freeway segment
- Infrastructure elements:
 - New 4-lane single-span bridge
 - 1.5-mile 4-lane crossing arterial, plus 4 .2-mile single-lane ramps
 - Not in rocky or mountainous terrain
 - 4 high-mast asymmetrical luminaires, 8 roadway luminaires in the arterial median
 - 12 small signs and 4 medium signs
 - 15 acres of grassland consumed
- Affect on traffic: slight reduction in VMT (project creates a more efficient route); no change in speeds. No construction delay.

Example Project 1: Project Inputs

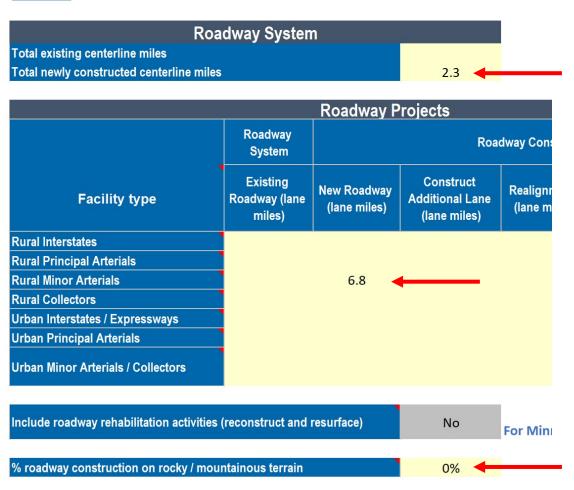
INSTRUCTIONS


- 1. Populate location (state) and lifetime (years) for your analysis.
- 2. Select operating mode (*Project* or *Planning*) for your analysis. (The tool can analyze different individual projects (*Project* mode) or a suite of projects in a comprehensive plan (*Planning* mode).
- 3. Select the infrastructure type(s) to analyze. Input all requested data using information from the project or plan you want to analyze. Then navigate to the relevant *analysis page(s)* for your project or the individual project(s) in your plan and complete the analysis for each infrastructure type by entering information in all cells that are shaded yellow. Blue and gray cells display fixed values and results; do not change the information in these cells.
- 4. Apply any selected mitigation measures on the Mitigation Strategies tab.
- 5. Review outputs on the Summary Results tab.
- 6. For further instructions, refer to the accompanying User Guide for detailed descriptions of factors and assumptions used in this tool.

Clear All User Data

3/30/2022 35

Example Project 1: Bridge and Lighting Inputs

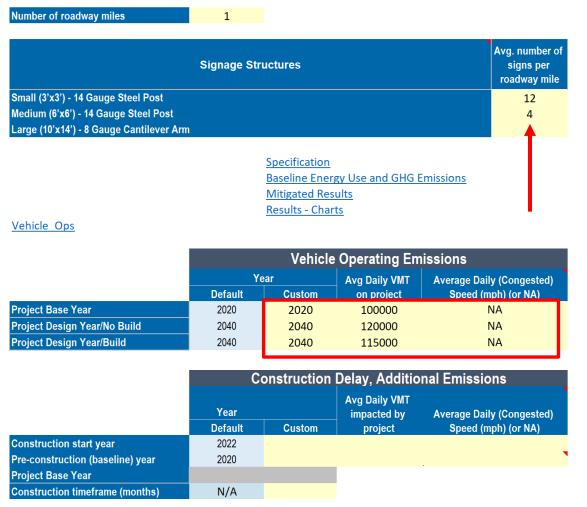

Lighting Structures			Ave. number	Typical wattage	
MnDOT Luminaire Type	Typical Lumens	Ave. number of HPS lights per roadway mile	of LED lights per roadway mile	of LED lights in this lumen range	
Roadway Use 40' Mount 250 W HPS Replacement	15,450			120	
Roadway Use 49' Mount 400 W HPS Replacement	18,120			147	
Roadway Underpass Use 250 W HPS Replacement	10,320			100	
High Mast Luminaire - Asymmetrical	43,300		4	322	
High Mast Luminaire - Symmetrical	85,300			629	
Roadway Luminaire - 5 Lane Shoulder	43,264			325	
Roadway Luminaire - 5 Lane Median	31,341		8	226	
Rest Area Parking Lot Luminaire	15,850			130	
Rest Area Walkway Luminaire	4,150			35	
Other (specify wattage in Column G)					

Lights entered as specified; entering 1 mile for roadway miles will give total emissions for all lights

3/30/2022 36

Example Project 1: Roadway Inputs

Roadways



- 1.5-mile 4-lane crossing arterial, plus 4 .2-mile single-lane ramps
 - = 2.3 new centerline miles (1.5 + 0.8)
 - And 6.8 lane miles
 (1.5*4 + 0.8)

Example Project 1: Land Use Inputs

Land Use						
Acres of Land Used						
Grassland	Grassland Forest Forest					
covered by	covered by converted					
pavement & pavement & to grassland						
shoulder	shoulder	(ROW)				
15						

Example Project 1: Signage and Traffic Inputs

- Signs entered as specified; using 1 mile will give total emissions for all signs
- Traffic data entered; using "NA" for speeds because speeds don't change
- No construction delay

Example Project 1: Summary Results

Summary Results

	Total Greenhouse Gas Emissions			
	MT CO2e MT CO2e MT CO2e			
	Baseline	BAU	Mitigated	
Materials	1,133	1,133	1,133	
Transportation	151	141	141	
Construction	1,331	1,258	1,258	
Maintenance	430	335	335	
Usage	398,615	398,615	398,615	
Total	401,659	401,482	401,482	

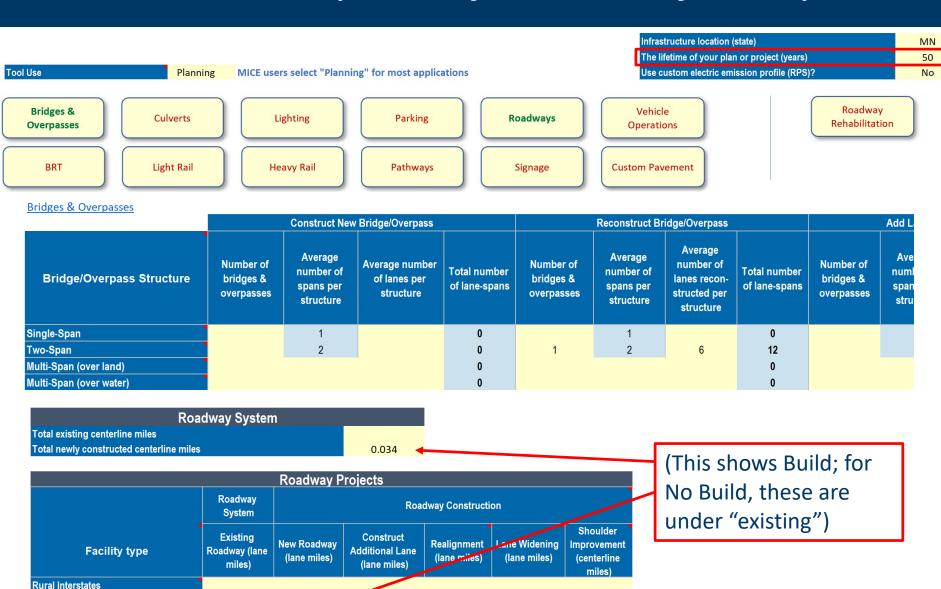
- The Summary Results tab includes total lifetime emissions for the Build scenario
- Buttons at the top show which elements included; note that Total Greenhouse Gas Emissions selected

Example Project 1: Build/No-Build Traffic and Land Use Results (MnDOT-specific tables)

Vehicle Ops: Build/No Build results (the Usage totals on this page reflect only the Build scenario)

	cc	Emissions 2e (MT/year)	Emissions CO2e (US Tons/year)	Energy, Mbtu/year
Project Base Year	2020	21,249	23,423	277,684
Project Design Year/No Build	2040	19,422	21,409	253,477
Project Design Year/Build	2040	18,613	20,517	242,915
Difference Between Build and No Build		-809	-892	-10,562
Cumulative Difference over project lifetime		-8,093	-8,921	-105,615
Project Total (Build scenario)	20	398,615	439,397	5,205,992

Emissions associated with land use changes (these are also included in the Construction totals on this page)


	CO2 (MT)	CO2 ((US Tons)
Total	300	0.0	330.7
Annual	1!	5.0	16.5

Example Project 3: Bridge Replacement

- Replace one 6-lane double-span bridge, 180' long
- Need to also account for replacement of pavement surface (180' * 6 lanes = 0.205 lane miles, 0.034 centerline miles)
 - (for a real project, might also need to replace lights, signs, sidewalks)
- Assume a 50-year project lifetime
- No change in traffic, no construction delay

Example Project 3: Project Inputs

43

0.205

Rural Principal Arterials

Rural Minor Arterials

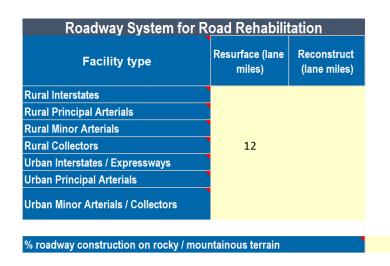
Example Project 3: Results

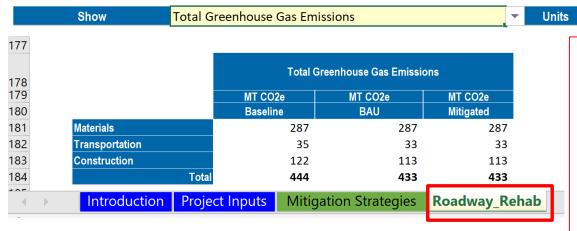
	Total Greenhouse Gas Emissions		
	MT CO2e	MT CO2e	MT CO2e
	Baseline	BAU	Mitigated
Materials	-	-	-
Transportation	-	-	-
Construction	-	=	-
Maintenance	22	21	21
Total	22	21	21

	Total Greenhouse Gas Emissions			
	MT CO2e MT CO2e MT CO2e			
	Baseline	BAU	Mitigated	
Materials	670	670	670	
Transportation	21	20	20	
Construction	189	176	176	
Maintenance	22	21	21	
Total	903	886	886	

(No Build)

(Build)


MICE does not account for maintenance of bridge structures, only maintenance of the roadway surface (same amount in No Build and Build)


Example Project 4: Resurfacing

- Resurface 12 lane miles of rural collector
- Project less than 1 year = analysis of construction delay not required

Example Project 4: Project Inputs and Results

Results are on the Roadway_Rehab tab; for resurfacing and reconstruction projects, MICE does not open a Summary Results tab (Be sure to select Total GHG units) No Maintenance emissions for these projects

46

MT CO2e

Grouping Projects

- Under MnDOT's GHG guidance, similar projects can be grouped and analyzed together. CE documents can reference the grouped analysis, instead of an individual analysis for each project.
- Example for resurfacing:

Roadway System for Road Rehabilitation				
Facility type	Resurface (lane miles)	Reconstruct (lane miles)		
Rural Interstates	24			
Rural Principal Arterials	38			
Rural Minor Arterials	22			
Rural Collectors	12			
Urban Interstates / Expresswavs				

	Total Greenhouse Gas Emissions			
	MT CO2e MT CO2e MT CO2e			
	Baseline	BAU	Mitigated	
Materials	2,880	2,880	2,880	
Transportation	394	366	366	
Construction	1,442	1,341	1,341	
Total	4,715	4,587	4,587	

Resources

GHG guidance:

- http://www.dot.state.mn.us/planning/hpdp/index.html
- Note: the MnDOT HPDP is currently being updated to a new TPDP; the scope of MnDOT's guidance will remain the same, but there may be formatting and other nonsubstantive changes for reporting
- MICE tool and User Guide:
 - http://www.dot.state.mn.us/environment/airquality/index.html
- ICE 2.1 and User Guide:
 - https://www.fhwa.dot.gov/environment/sustainability/energy/tools/carbon estimator/

MnDOT Contacts

Out-State Districts

Peter Wasko, INCE peter.wasko@state.mn.us

Environmental Modeling and Testing Unit Office of Environmental Services (OES) MnDOT Central Services Building 6000 Minnehaha Avenue South, MS 660 St. Paul, MN 55111

Phone: (651) 366-5801

Metro District

Natalie Ries

natalie.ries@state.mn.us

Project Controls Section

MnDOT Water's Edge Building

1500 W. Co. Rd. B2, MS 50

Roseville, MN 55113

Phone: (651) 234-7681